If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+4y-9=0
a = 4; b = 4; c = -9;
Δ = b2-4ac
Δ = 42-4·4·(-9)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*4}=\frac{-4-4\sqrt{10}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*4}=\frac{-4+4\sqrt{10}}{8} $
| -10-6w=-4w+10 | | -w-10w=11 | | -10h-7=-9h | | 4/y-9/(y^2)+4=0 | | 17s-14s-2s-1=9 | | 6(3-7)-(3-4t)=10 | | -3(2/3m+4)=6 | | -5d+1=-6d+7 | | -7x-10-15x=-22x+81 | | 9j-7j+3j+4j-6j=15 | | -10c+8=-9c | | 2x+5=8x-5 | | 3.1^k−5=9.2 | | 35+3x+90+8x=120 | | -5j=4-4j | | -3h+h-12h=-14 | | 2x+5+8×-5=180 | | 2q+4q-5q+q=16 | | (31.3+x)/2=21.1 | | X35+y30=2125 | | 3z+6=11 | | -7u-9=2u | | -19v-18=13v-18 | | 16x+90=84 | | 4/3x+2=1/3x-4 | | R=1/6;60r-4 | | -20+4s=20+20+14s | | 7k^2-12k-4=0 | | -11g=-11-12g | | 4(x+2)+4(5-x)=-108 | | 10+8c=-4+6c | | -9q-4=6-10q |